贴片功率电感:创新医疗传感器技术 Hartley表示,接下来能大大改进耳蜗植入系统及性能的重要领域包括:与商务设备的随处无线连接能力;低功耗下更加智能的场景分析算法,以及使病人能够接收临床医师耳蜗植入服务的技术,而与病人或医师的位置
随着数字信号处理和集成电路的发展,要求数据处理速度越来越高,基于单片机+DDS(直接数字频率合成)的频率合成技术已不能满足目前数据处理速度需求。针对这一现状,本文提出了基于FPGA+DDS的控制设计,能够快速实现复杂数字系统的功能。
1 AD9910的硬件电路设计
AD9910是ADI公司推出的一款单片DDS器件,内部时钟频率高达1GHz,模拟输出频率高达400 MHz,14-bit的DAC,最小频率分辨率为0.23 Hz,相位噪声小于-125 dBc/Hz@1 kHz(400 MHz),窄带无杂散动态范围大于80 dB,串行I/O控制,具有自动线性和随机的频率、相位和幅度扫描功能,1 024 32位RAM,具有调幅、调相的功能,1.8 V和3.3 V供电,可实现多片同步。应用在高灵敏度的频率合成器、可编程信号发生器、雷达和扫描系统的FM调制源、测试与测量装置以及高速跳频系统AD9910芯片的主要外围电路为:参考信号源、控制、环路一体电感滤波器和输出低通滤波器等电路。参考信号源为AD9910提供基准频率,参考信号输入芯片后,内部的倍频器和锁相环起作用产生1GSPS的系统时钟;控制电路通过芯片的I/O给内部寄存器写入内容,寄存器内容不同,芯片工作状态不同,控制芯片可以是单片、FPGA或DSP,本设计采用FPGA;
AD9910提供专门的管脚外接环路滤波器,以电感器原理优化内部PLL的性能,环路滤波器为简单的低通滤波器;AD9910输出高达400 MHz的模拟信号,为了减少噪声,在它的输出端口设工字电感计了400MHz的低通滤波器。
图1为实际设计的AD9910外围连接图。
在AD9910的电路设计中,应注意以下几个问题:
1)AD9910电源和地设计。AD9910需要4组电源,AVDD(1.8 V)、DVDD(1.8 V)、AVDD(3.3 V)和DVDD(3.3 V),模拟电源和数字电源需要隔离,电源管脚的滤波最好采用钽电容和陶瓷电容。在PCB设计中,数字地和模拟地分开,用磁珠单点连接,减少干扰。
2)AD9910环路滤波器设计。当外部的时钟较低时,例如100 MHz,系统时钟1 GHz,芯片内部的锁相电路起作用,这时需要在外部设计环路滤波器,如图1中R17、C47和C48构成的RC滤波器,电容电阻值用如下公式计算。
其中:N为分频比,KD为鉴相器的增益,KV是VCO的增益,fOL是环路带宽。
3)晶振电路的设计。AD9910需要外部提供参考信号源,它的质量直接决定了模拟输出信号的质量(频率精度和相位噪声),本设计采用高精度的温补晶振,频率100 MHz。在PCB设计时尽量靠近时钟管脚。
2 FPGA控制AD9910的软件实现
采用Ahem公司的EP1C6Q240C8控制AD9910,该器件的外部时钟频率为50 MHz,20个128?36 bit的RAM块,5980个逻辑单元(LE),240个管脚,属表贴器件。
FPGA与AD9910的外围电路简单,无电感器厂家需外加任何驱动电路,从而节省了硬件电路设计和调试电感生产的时间,FPGA与AD9910的连接框图如图2所示。
其中,SCLK用于输出数据交换的控制时钟,CS为片选信号,IO_RFSET控制DDS的系统复位,SDIO是数据传输线,IO_UPDATE使能DDS内部各寄存器数据更新,PROFILE用来选择八个相位/频率寄存器中的一个,OSK用来选择DDS的输出键控模式,MASTER_RESET用来清除所有存储单元,并且把寄存器设为默认值,PWRDWNCTL用来选择是否使用外部使能控制,不使用时置为0,这里设置为0,PLL_LOCK用来指示锁相环的锁定状态。另外,由于未采用多芯片数据通信,所以需将AD9910与同步信号相关的引脚悬空,例如7、8、9、10和53引脚。
根据需要AD9910有4种工作模式可供选择,分别是单音模式、RAM调制模式、Digital ramp modulation模式和并行数据端口调制模式。这里选用最基础的signal-tone单音工作模式。
对AD9910的17个寄存器进行设置,这里使用了AD9910的评估软件对寄存器参数进行设置,只需要在评估软件中输入目标参数,软件将自动给出寄存器中的值,这样减小了工作量。根据需要,这里仅对其中的3个寄存器进行设置,分别是地址为0X01、0X02的控制寄存器和地址为