功率电感:高速单片机硬件关键参数 3 电源完整性PI PI的提出电感企业,源于当不考虑电源的影响下基于布线和器件模型而进行SI分析时所带来的巨大误差,相关概念如下。◆ 电子噪声,指电子线路中某些功率电感元器件产生的随机起伏的电信号。
一直以来,一般的功率电感是以Ni-Zn系的铁氧体作为磁芯的,这种材料虽然强度较高,但是饱和磁束密度较低,高温时,饱和磁束密度会降低,在电子部件驱动日趋低电压,大电流化的今日,这类小型化产品无法对应大电流电感。要在高温环境下通过更大的电流,就要使用由饱和磁束密度高且损耗小的Mn-Zn铁氧体磁芯构成的电感。一般而言,Mn-Zn铁氧体材料的电感,磁芯的中脚部分会形成Gap,磁芯的中脚部分开始较容易饱和。如图4 VLM所示,结构是由口字形磁芯(磁性结合型磁芯)和棒状磁芯组成。采用了这种构造后,将本来容易产生饱和的中心磁芯的中脚部分分成上下两部分,在上下根部形成Gap,不易出现部分饱和,能够容许更大电流通过。另外,由于Gap分散在卷线的上下两端,可以减少从Gap泄漏的磁束对卷线的影响。过电流损失减少,电源效率也提高了。再者,还可使用金属磁芯的电感。它的饱和磁束密度更高,受温度影响饱和电流的变化很少。如图6 ERM6050所示。金属磁芯的电感还有另外一款复合金属型的电感。
我们不能否定电源模压电感器厂电感中泄漏的磁束不会引起各9种误动作,所以就致力于把Gap做到线圈的下方(图2 LTF5022);把Gap转到电感内部(图4 VLM系列)。
受各种电子器件控制的影响,电源电感的可听频率带信号可能重叠,发出嘶响。如果安装在引擎室内没有任何问题,但是随着对车内环境安静性的提高,这类器件安装在引擎室之外的场所时,电源电感的低噪音对策就显得尤为重要。
可听频率模压电感器生产商带的信号只要通电,就不能完全抑制鸣叫的发生。但是为了降低鸣叫,可以通过采取使用低磁致伸缩材料,减少组成部件,向更小型化发展,及固定部件尽可能把固有频率提高到可听
频率带之上这类方法解决。
如同图7 SPM系列这类的复合金属型产品不仅仅能对应高温时的大电流,因为绕线和磁芯材料是一体成形的,更能有效抑制绕线的振动,降低鸣叫。
随着今后电动汽车及混合动力车的发展,汽车的电子化也将加速发展。与此同时,对应的被动部件也将不断地向小型化,生产自动化,SMD化演变。可以预计未来的需求会越来越大。