功率电感:荧光灯镇流器与电感镇流 随着人类社会的不断进步,人们对物质生活与精神生活的完美追求,现代照明技术演绎精彩世界已被广泛接受和应用,照明在当今社会已作为衡量一座城市和地区现代化文明的重要标志之一。根据国家经贸委、建设部、国家质
图1中的断路器仅需几个廉价的元件,即可对过电流和过电压故障状态进行反应。电路的核心是可调节的精密分路电压调节器D2,置在一只3引脚的封装中,提供了电压参考、比较器和集电极开路输出。
图2显示了ZR431、D1的简化图。参考输入的电压与标称为2.5V的内部电压参考VREF进行比较。 在关闭状态,当参考电压为0V时,输出晶体管关闭,阴极电流小于0.1mA。当参考电压接近VREF时,阴极电流稍微增大,参考电压超过2.5V阀值时,装置完全接通,阴极电压降到约2V。在这种条件下,阴极和供电电压间的阻抗确定了阴极电流,其大小从50mA~100mA。
在正常运行条件下,D2的输出晶体管关闭,P沟道MOSFET Q4的栅极通过R9,使MOSFET全面增强,允许负载电流ILOAD从电源电压-VS流经R6进入负载中。Q2与电流检测电阻R6监测ILOAD的幅度,其中Q2的基射极电压VBE为ILOAD×R6。对于正常值的ILOAD,VBE小于使 Q2偏置的0.6V大电流电感器,所以晶体管对R3和R4节点的电压没有影响。由于D2参考输入的输入电流小于1mA,在R5上的电压降可忽略,参考电压实际上等于R4
上的电压。
如果当ILOAD超过其最大允许值时的过载情况下,R6上电压增加,导致足够的基射极电压导通Q2。R4的电压与参考电压向VS靠近,导致D2阴极电压降到约2V。D2的输出晶体管现在吸收通过R7和R8的电流,将Q3偏置导通。Q4的栅极电压有效地箝位通过Q3的电源电压,然后MOSFET 关闭。同时,Q3通过D1向R4提供电流,从而将R4到二极管电压降到低于电源电压。因此,由于Q2的基射极电压现在为0V,已经关闭,没有负载电流通过R6。结果,无负载电流通过R6, D2的输出晶体管触发闩锁,电路保持其断路状态,其中负载电流为0A。当为R6选择值时,在最大允许的负载电流下,应确保Q2的基射极电压小于约0.5V 。
在对过电流条件作出反应时,断路器还可对异常大的电源电压作出反应。当负载电流在其正常范围内,且Q2关闭时,电源电压的大小及在电源线间构成一个分压器的R3和R4值,确定了参考输入的电压。如果电源出现过电压,R4上的电压超过2.5V 参考电平,D2的输出晶体管开始导通。Q3 再次导通,MOSFET Q4关闭,负载有效地与危险的暂态电压隔离。
电路保持断路状态直到复位。在这些条件下,Q3将Q4的栅源电压箝位到0V左右,从而保护了MOSFET 不受过大栅极源电压的损坏。不管R5上可忽略的电压,可以看到参考电压为VS×R4/(R3+R4)。当参考电压超过2.5V时,由于D2的输出导通,可以重新设定公式R3=[(VST/2.5)-1]×R4 ,以Ω 表示,其中VST为所需的电源电压断路电平。例如,如果R4 值为10kΩ,18V的断路电压要求R3值为62 kΩ。在为R3和R4选择值设定所需的断路电压时,要确保它们足够大,以保证分压器不会使电源过载。同样,尽量选择避免由于参考输入电流造成误差的值。
当初次对电路加电时,会发现电容、灯丝、电机及类似的负载都有较大的浪涌电流可使断路器断路,尽管其正常稳定的工作电流低于R6设定的断路电平。解决此问题的一种方法是添加电容C2,可减慢参考输入的电压变化速率。这种方法虽然简单但有一个严重的缺点,它会减慢电路对真正过电流故障条件的响应时间。
元件C1、R1、R2和Q1提供了另一种解决方案。在加电时,C1初次放电使Q1导通,从而将参考输入箝位到0V,电路断路时产生浪涌电流。然后C1通过R1和R2进行充电直到Q1最终关闭,解脱参考输入的箝位,可让电路迅速对过电流响应。如C1、R1和R2的值,电路允许约400ms后浪涌电流消失。如选择其它值允许电路的负载承受任意长时间的浪涌电流。如果断路器断开,可以循环电源或按复位开关S1,将其复位。如果应用不需要浪涌保护,可简单省略C1、R1、R2 和Q1,将S1连接在参考输入和0V之间即可。
在选择元件时,确保所有元件都要符合可能遇到的额定电压和电流级别。双极晶体管没有特殊需要,这些晶体管,特别是Q2和Q3,应该有较高的电流增益,Q4应该有较低的导通电阻,Q4的最大漏源极和栅源极电压必须符合电源电压的最大值。D1可以使用任何小信号二极管。如果可能遇到超大的瞬间电压,作为保护措施,必须使用齐纳二极管 D3和D4来保护D2。