TB6588FG的无传感器BLDC电机控制摘要:无传感器BLDC电机具有直流电机结构简单、运行可靠、维护方便等一系列优点,现已广泛应用于工业控制的各个领域。本设计方案采用东芝三相直流无刷驱动器TB6588FG和MSP430F12012作为核心
在开关变换电源电路中,将谐振型变换开关元件的励振、驱动方法定义为两类,即把设置有专用的励振和驱动电路方式叫作它激励振、驱动;把利用变压器反馈电路实现的励振、驱动方式叫作自激励振、驱动。这里阐述利用正交型变压器PRT反馈电路构成的自激励振方式电压谐振型软开关变换电源技术。
1 正交型变压器的控制技术
对于自激励振方式谐振型变换器的控制技术,尤其重要的是采用各种铁氧体磁心的正交型变压器PRT。图1是PRT构造和电感特性及电路图形符号。其中,图1(a)为旧单口型铁氧体磁心PRT;图1(b)为新双口型铁氧体磁心PRT;图1 (c)为PRT电路符号。比较它们的形状和电感特性后得知,新双口型PRT的磁路长度比旧单口型的磁路长度延长,磁阻增加。由于主线圈N的电感量Ln和控制线圈Nc的直流控制电流Ic的变化,使新双口型的Ln变化幅度和线性范畴都扩大了。
在图2中设控制线圈Nc流过直流Ic时产生的磁通为φc、主线圈N1或N2上流过交流电流I1时产生的磁通为φ1。若图2(a)中箭头方向为正,则在磁路 A和D上的磁通φc和φ1方向相反,磁通为φ1-φc;而在磁路B和C上的磁通φc和φ1方向相同,磁通为φ1+φc。图2(b)中主线圈N1加载到磁路 B和D上的B-H曲线,相当于被Lc的变化而调制的磁滞曲线。由于加载到线圈Nc磁路A,B上的φ1感生电压互相抵消,在Nc上不产生交流电压,所以 PRT的电流Ic信号就可以作为控制磁路B和D上的磁通量,把它作为可控电感元件,实现谐振型变换器的控制技术。图2(c)为这种PRT的电路符号。
2 自激励振方式电压谐振型变换器
开关电感器生产厂家元件在断开时,加在开关元件上的电压波形是LC谐振时产生的正弦波电压,也称之为电压谐振。利用电压谐振型变换器VRC电路和PRT的组合,可以构成各式软开关变换电源。常用的自激励振方式VRC的控制方式有如一体成型电感下几种:
2.1 并联谐振频率控制方式
图3为单管自激励振方式VRC的并联谐振频率f0控制方式的开关变换电源电路。图3(a)为电路图,图3(b)为控制特性图,图3(c)为工作波形差模电感器图。
图3(a)中PRT的结构如图2所示,线圈N1与脉冲电流转换器PCC的电感Ls串联后,再与并联电路(包括VCBO>1 200 V的耐高压BJT管Q1、续流二极管D1、并联谐振电容Cr)串联。另外,有中心抽头的全波整流线圈N2与谐振电容Cs并联。
图中自激励振电路由下述元件和小电路构成,如启振电阻Rs,串联谐振电路(包括绕有1匝线圈的脉冲电流转换器PCC、限流电阻RB、定时电感LB、定时电容CB),并联电路(包括箝位二极管DB,Q1的基极一发射极)。由此可绕行电感知,这个自激励振、驱动电路的工作波形是低噪声、正弦波波形。
另外,在RB较小时.开关变换频率fS由LB和CB的串联谐振值决定,见式(1):
为了表示VRC电路的谐振频率fo和输出直流电压Eo,在Eo端接上负载电阻RL后,分别设N1,N2的电感值为L1,L2;匝数比为n=L1/L2;滤波电解电容Ci两端电压为Ei,则等效电路的导出解析式结果fo及Eo。见式(2),式(3):
由式可知,若固定fs,控制PRT的可变电感L1,就可控制谐振频率fo和输出电压Eo。设fo>fs,ω=2πfs,则如图3(b)所示,依据PRT控制原理,若控制Ic,就能稳定输出电压Eo的值。
当Q1截止时,产生的集一射间脉冲电压Vcp是L1+L2和Cr的并联谐振电压,其峰值是Ei的5~6倍,但Q1瞬断时的开关变换损耗较小。当负载功率 Po=180 W,交流输入电压VAC=220 V,FS=50 kHz时,可以得到AC-DC的电能变换效率为ηAC-DC=83%。从Ci端PRT的励磁电流I1和N2侧Cs的两端交流电压V2的工作波形可以看到,其基本上接近光滑的正弦波状,可以达到低噪声,满足实用的目的。
2.2 谐振电压脉冲宽度控制方式
在图3中,PRT的主线圈N1,N2是用φ100μm单线捆成40~50根的绞合线绕制而成,它不但要保证铁氧体磁芯的绝缘间隙,还会造成体积三脚电感增大。为了减少电路体积,可以想到,如果控制PCC的电感量Ls,也能对Eo进行控制。故将图 3的PCC换成图1的PRT,则用PIT一次侧串接PRT的方式构成了VRC,如图4所示。图4(a)为电路图;图4(b)为工作波形图。